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A B S T R A C T

Applications with mobile and sensing devices have already become ubiquitous. In most of these applications,
trajectory data is continuously growing to huge volumes. Existing systems for big trajectory data organize
trajectories at distributed block storage systems. Systems like DITA that use block storage (e.g., 128 MB each)
are more efficient for analytical queries, but they cannot incrementally maintain the partitioned data and
do not support delete operations, resulting in difficulties in trajectory analytics. In this paper, we propose
an incremental trajectory partitioning framework Tinba that enables distributed block storage systems to
efficiently maintain optimized partitions under incremental updates of trajectories. We employ a data flushing
technique to bulk ingest trajectory data for random writing in distributed file system (DFS). We recast the
incremental partitioning problem as an optimal partitioning problem and prove its NP-hardness. A cost–
benefit model is proposed to address the optimal partitioning problem. Moreover, Tinba supports most of
the existing similarity measures to quantify the similarity between trajectories. A heuristic is developed to
instantiate the Tinba framework. Comprehensive experiments on real-world and synthetic datasets demonstrate
the advancements in ingestion performance and partition quality, as opposed to other trajectory partition
methods.
1. Introduction

The development of sensing devices and positioning technologies
has enabled many applications from different domains to collect large
amounts of trajectory data. For instance, Didi captures 106TB of trajec-
tory data every day.2 As of December 2021, Uber recorded 28.98 billion
trips, of which 6.3 billion trips have been recorded in the year of 2021.3
As a result, the trajectory data collected by these applications are
not only characterized by large volumes, but also by constant growth
and updates. Most importantly, these characteristics make trajectory
analysis applications difficult.

Existing studies focus on optimizing this problem in two types of
distributed systems, distributed databases and distributed block storage
systems. In distributed databases, each record uniquely corresponds
to a key in order to find its exact location [1], employing a log-
structured merge tree (LSM-tree) to provide a low-cost index for a
high rate of trajectory inserts (and deletes). In contrast, block storage
system roughly divides the data into partitions [2–4] and ignores the
exact location of the records. Given that the analytical query reads
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all the records in the partition to which it accesses. Therefore, the
block storage system is more suitable for trajectory analytics tasks than
NoSQL database.

Existing block storage systems focus on optimizing this problem
for static data. However, batch ingestion of trajectory data exceeds
the partition maintenance capability of block storage systems, because
(1) random write limitation problem of DFS: it is challenging to break
the sequential write limitation of DFS to support random writes of
trajectory batch ingestion; (2) incremental partition problem: since batch
ingestion produces a low quality partition set, it is challenging to design
partition reorganization techniques to reduce the cost of all partition
reorganization and trajectory analytics cost; (3) versatility problem of
similarity functions: It is challenging that the designed data reorganiza-
tion techniques supports various trajectory similarity functions to be
applicable for different trajectory analytics tasks.

To compensate the gap between the limited incremental partition
maintenance capability of distributed block storage systems and the
urgency of practical applications for efficient trajectory analytics, we
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propose a Trajectory incremental big data analytics framework Tinba.
We devise a data flushing technique for random writes on DFS. We
recast the incremental partitioning problem as an optimal partitioning
problem and prove its NP-hardness, which means that constructing
optimal partitions is a difficult task. So we decompose the optimal parti-
tioning problem into partition selection and data reorganization problem.
Partition selection provides a set of candidate partitions to be reor-
ganized, while data reorganization physically reorganizes the selected
partitions. Since any static index of the trajectory data can be used
to solve the data reorganization problem, this paper mainly focuses
on the partition selection problem. The challenge is how to accurately
estimate the similarity search cost and use that cost as a benchmark
for partition quality. In light of this, we propose a cost model to
estimate the processing cost of analytical queries, and a benefit model
to estimate the benefit of data reorganization. We design a heuristic for
instantiating Tinba and propose a greedy algorithm to select a set of
most beneficial partitions for reorganization.

In summary, this paper makes the following contributions.

• We investigated partition problem of incremental trajectory and
propose a framework Tinba, which can efficiently support incre-
mental trajectory data with batch updates for trajectory analytics
in block storage systems.

• We recasts the incremental partitioning problem as an optimal
partitioning problem and proves its NP-hardness.

• We propose a cost–benefit model to select partitions for reorgani-
zation. The cost model is used to estimate the processing cost of
the analytical query, and the benefit model to estimate the benefit
after data reorganization.

• We devise three heuristics for instantiating Tinba and propose
a greedy algorithm to select a subset of optimal partitions for
reorganization.

• We conduct a comprehensive evaluation on real world and syn-
thetic datasets. The results indicate that Tinba outperforms state-
of-the-art big trajectory partition methods.

The remainder of the paper is organized as follows. Related work
is discussed in Section 2. Section 3 recasts the incremental partitioning
problem as an optimization problem and proves its NP-hardness. Sec-
tion 4 provides an overview of the Tinba framework. Section 5 propose
a cost–benefit model for optimal partitioning problem. Section 6 shows
three implementations of the Tinba. Section 7 presents the results of
our experimental study and Section 8 concludes the paper.

2. Related work

2.1. Trajectory analytics systems

Existing trajectory analytics systems can be divided into two cat-
egories, centralized systems and distributed systems. The distributed
systems can be roughly categorized into distributed databases and block
storage systems, as shown in Fig. 1(b) and 1(c).

2.1.1. Centralized systems
As shown in Fig. 1(a), MobilityDB [5], BerlinMOD [6] and TrajS-

tore [7] design specific storage structures and indexes for traditional
database engines. Torch [8] adopts a columnar data schema to provide
better query and analytics performance. However, these systems are de-
signed for centralized architectures, so they are inefficient or impossible
to handle big trajectory data. Moreover, the flexibility of the system
is limited because the storage structure is limited by the underlying
database engine.
2

2.1.2. Distributed databases
As shown in Fig. 1(b), such systems are mainly focused on NoSQL

databases (e.g., TrajMesa [1], ST-hash [9] and Trass [10]) and big
data management systems (e.g., AsterixDB [11]). The advantage of this
type of system is that the random write limitation of DFS is solved by
converting random writes to sequential writes using LSM-Tree [12].
The disadvantage is that it is costly to process records, as they must
be retrieved one by one by index. As a result, those systems are
appropriate for selective queries that return a small number of records,
but not for analytical queries that process the majority or all records.

2.1.3. Block storage systems
Fig. 1(c) shows systems in this category that create partitions di-

rectly on blocks of data in DFS. For example, Hadoop-based systems
(e.g., Summit [13], CloST [4] and PARADASE [14]) and Spark-based
systems (e.g., TrajSpark [2], DITA [3], DFT [15] and other [16–18]).
Some of these systems, such as DITA [3], while considering data locality
and workload, similarity analysis is optimized only for static trajectory
datasets. In other words, whenever a new record is added or an old
record is deleted, the entire data must be completely repartitioned
for optimal performance. Several adaptive trajectory data partitioning
techniques, e.g., TrajStore [18], Geohash-Tree [19] and others [20–
22], have been developed to address this limitation. However, they
are either limited to cloud-based platforms [20], database systems [22]
or in-memory partition [21], neither of which addresses incremental
trajectory partitioning over distributed block storage systems.

In summary, in order to enable big trajectory data to efficiently pro-
cess analytical queries in the presence of a large number of insertions
and deletions, this paper studies the incremental partitioning problem
in distributed block storage system. Fig. 1(d) shows the proposed work
to introduce incremental partitioners into block storage systems for
incremental maintenance of DFS partitions. This work is similar to
LSM-Tree in achieving high frequency updates on a constrained DFS
compared to a distributed database.

2.2. Trajectory similarity measures

According to the evaluation of different similarity measures by
existing studies [23,24], the most representative similarity functions
are selected for analytics in this paper, including Fréchet distance [25],
Dynamic Time Warping (DTW) [26], Edit Distance on Real Sequences
(EDR) [27], and Longest Common Subsequence Distance (LCSS) [28].
Each distance function has distinct capabilities. This paper demon-
strates the design and instantiation of the Tinba using the most popular
similarity measure (Fréchet distance) for geometric curves and time
series data. We also conduct a comprehensive experimental evaluation
using DTW, EDR, and LCSS functions to demonstrate the versatility of
the Tinba. We describe these functions in Appendix B.

2.3. Trajectory analytics

There have been several studies on trajectory analytics, including
clustering [29], outlier identification [30], classification [31–33], pat-
tern mining [34,35] and simplification [36,37]. Wang et al. [38] pro-
vides a comprehensive review of related work on trajectory data man-
agement and analytics. In this paper, we focus on the most currently
popular trajectory analytics task, i.e., trajectory similarity searches [3,
10,15,18].

3. Problem statement

In this section, firstly, some basic definitions are presented. Sec-
ondly, this paper recasts the incremental partitioning problem as an
optimal partitioning problem and proves its NP-hardness. Table 1 lists

the frequently notations used in this paper.
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Fig. 1. Architecture of trajectory analytics processing methods.
Table 1
Frequently used notations.
Notation Description

𝑏 Default block size, e.g., 128 MB
𝑀𝐵𝑅() Minimum MBR: ∪𝑛

𝑖=1𝑚𝑏𝑟(𝑟𝑖)
𝑎𝑠𝑖𝑧𝑒() The actual size of  is the sum of all trajectory sizes: ∑𝑛

𝑖=1 𝑠𝑖𝑧𝑒(𝑟𝑖).
This represents the disk space required to store these trajectories.

𝑎𝑏𝑙𝑜𝑐𝑘𝑠() The number of actual blocks of : ⌈ 𝑎𝑠𝑖𝑧𝑒()
𝑏

⌉

𝑐𝑠𝑖𝑧𝑒() The compact size of  is the size that this set will occupy if
deleted trajectories are removed: ∑𝑛

𝑖=1 (1 − 2 ⋅ 𝑖𝑠_𝑑𝑖) ⋅ 𝑠𝑖𝑧𝑒(𝑟𝑖).
𝑐𝑏𝑙𝑜𝑐𝑘𝑠() The number of compact blocks occupied by  if compacted:

⌈

𝑐𝑠𝑖𝑧𝑒()
𝑏

⌉

MinDist(, 𝑝) The minimal distance from trajectory  to partition 𝑝
3.1. Preliminary

Definition 1 (Trajectory). A trajectory is a sequence of points, denoted
as  =

{

𝑡1,… , 𝑡𝑚,𝑀𝐵𝑅, 𝑠𝑖𝑧𝑒, 𝑖𝑠_𝑑
}

, where MBR and size represents
minimum bounding rectangle and size in bytes, respectively. For sim-
plicity we assume each point 𝑡𝑖 is represented as a 2-dimensional
tuple (𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒, 𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑒). In addition, 𝑖𝑠_𝑑 is a identifier that indicates
whether the trajectory is deleted.

Definition 2 (Partitioning). Given a dataset , a global partitioning 
is a collection of subset of :

 =
{

𝑝1,… , 𝑝𝑚
}

𝑠.𝑡. ∀ 𝑝𝑖 ⊆ , 𝑝𝑖 ∩ 𝑝𝑗 = ∅(𝑖 ≠ 𝑗) 𝑎𝑛𝑑 ∪𝑖 𝑝𝑖 = 
(1)

In this paper, we assume that the partitions are non-overlapping
with each other. Although it is difficult for trajectory data, this assump-
tion is orthogonal to the optimal problem studied in this paper.

According to the statistics of the literature on trajectory similarity
analytics in the last five years [23,24], Fréchet distance [25] is the
most widely used one. Therefore, Fréchet distance is used as the default
similarity metric. In addition, this paper also shows how to support
other similarity measures in Appendix B.

Definition 3 (Fréchet Distance). Given two trajectories  =
{

𝑡1,… , 𝑡𝑚
}

and  =
{

𝑞1,… , 𝑞𝑛
}

, Fréchet distance is computed as below.

𝐹 ( ,) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

max
1≤𝑖≤𝑚

Dist
(

𝑡𝑖, 𝑞1
)

𝑖𝑓 𝑛 = 1

max
1≤𝑗≤𝑛

Dist
(

𝑡1, 𝑞𝑗
)

𝑖𝑓 𝑚 = 1

max
{

Dist
(

𝑡𝑚, 𝑞𝑛
)

,min
{

𝐹
(

 𝑚−1,
)

,

𝐹
(

 𝑚−1,𝑛−1) , 𝐹
(

 ,𝑛−1)
}}

𝑜𝑡ℎ𝑒𝑟𝑠

(2)

where  𝑚−1 =
{

𝑡1,… , 𝑡𝑚−1
}

and 𝑛−1 =
{

𝑞1,… , 𝑞𝑛−1
}

are the sub-
trajectories of trajectories  and  respectively, and Dist

(

𝑡𝑖, 𝑞𝑗
)

is the
Euclidean distance of two GPS points 𝑡 and 𝑞 .
3

𝑖 𝑗
Definition 4 (Trajectory Similarity). Given two trajectories  and , a
trajectory distance function 𝑓 (e.g., Fréchet distance) and a threshold 𝜀,
if 𝑓 ( ,) ≤ 𝜀,  and  is similar.

Definition 5 (Edit Cost). Given two partitions  and  ′, the edit cost is
defined as the sum of the number of actual blocks read and the number
of compact blocks written when adding, deleting, or replacing  to
make it into  ′.

𝐸𝐶( , ′) =
∑

𝑝𝑖∈∖ ′

(

𝑎𝑏𝑙𝑜𝑐𝑘𝑠(𝑝𝑖) + 𝑐𝑏𝑙𝑜𝑐𝑘𝑠(𝑝𝑖)
)

(3)

where 𝑎𝑏𝑙𝑜𝑐𝑘𝑠(𝑝𝑖) = ⌈

𝑎𝑠𝑖𝑧𝑒()
𝑏 ⌉ is the number of actual blocks of ,

𝑐𝑏𝑙𝑜𝑐𝑘𝑠(𝑝𝑖) = ⌈

𝑐𝑠𝑖𝑧𝑒()
𝑏 ⌉ is the number of compact blocks occupied by

 if compacted.

Definition 6 (Search Cost). Give a partition  and a query , similarity
search cost is formally defined as follows.

𝑄𝐶( ,) =
∑

𝑝𝑖∈
𝑄𝐶(𝑝𝑖,) (4)

where 𝑄𝐶(𝑝𝑖,) is a cost function for one partition 𝑝𝑖, formalized in
Section 5.1. 𝑄𝐶( ,) measures the average cost of running a similarity
search with  on  , reflecting the effect of partitioning on search
processing.

3.2. Problem formulation

The key to incremental partitioning is to use the existing partition 
of the dataset  to find the optimal partition  ′ for the changed dataset
′ without starting from scratch [39]. Thus, we recast the incremental
partitioning problem as an optimal partitioning problem to be solved.

Definition 7 (Optimal Partitioning Problem). Given a partitioning state
 , a read/write blocks threshold  and a query trajectory . The
optimal partitioning problem is to find a new partition  ′ by editing
 that satisfy the following conditions:

(1) the edit cost of  and  ′ is not greater than , and
′
(2) 𝑄𝐶( ,) is minimized.
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Fig. 2. An overview of Tinba framework.
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Before analyzing and proposing solutions, the following conclusions
re given.

heorem 1 (Complexity of Optimal Partitioning). Optimal partitioning
roblem is NP-hard. (see the proof in Appendix A.1)

. Overview of the Tinba framework

In this section, we firstly introduce the partition dataframe on a
FS, and then discuss each step of the Tinba, including data flushing,
artition selection and data reorganization, as shown in Fig. 2.
Partition DataFrame. In terms of distributed block storage systems,

ach partition is persisted on disk as a separate file [3,13–15]. The
etadata of the partition is stored in DFS as a master file. In other
ords, the master file is also a global index. In the trajectory analytics
rocess, the master file is initially examined to determine the partitions
o be accessed. The selected partitions are then processed in parallel
sing a distributed computing engine.
Data Flushing. The data flushing consists of two operations: buffer

lushing and persistence flushing. Usually, in distributed systems, buffer
lushing ingests a new batch into the memory buffer and when the
omponents in the buffer reach a specified threshold, a persistent
lushing operation is triggered to store the data sequentially to disk.
Partition Selection. The partition selection step is used to select

he partitions that need to be reorganized from the set of candidate
artitions. System constraints that limit the amount of disk I/O in this
rocess were taken into account while designing this step. The purpose
s to select some low quality partitions (e.g., overlapping partitions)
or reorganization to improve partition quality. Since this step uses the
aster file to select partitions, it imposes a negligible overhead.
Data Reorganization. The data reorganization step achieves opti-

al partition processing by physically rewriting the selected partitions
nto optimal partitions and removing deleted records. This step is
mplemented by the existing static trajectory partitioning algorithm.
ince a physical rewrite completely scans the partition, the cost of
ata reorganization is linearly related to the total size of the selected
artitions.

. Cost-benefit model for partition selection

As shown in Fig. 2, we provide an overview of framework, including
ata flushing and optimal partitioning. Given that optimal partitioning
roblem is NP-hard (Section 3.2), this paper focuses on its sub-problem,
artition selection question, presents a theoretical demonstration, and
esigns a cost–benefit model.

.1. Cost model for similarity search

Previous studies have shown that in analysis tasks, the cost of sim-
larity search is a benchmark for the trajectory partitioning quality [1,
,7,17].

Existing query cost models primarily consider the number of disk
ages. These models make sense for a traditional DBMS that accesses
ata from disk because the disk pages are small (e.g., 4 KB). Assuming
4

s

hat the smallest unit of access to disk is the disk page, then the cost of
ll disk pages can be treated as uniform. When dealing with DFS, this
ssumption no longer holds. In DFS, data is stored in blocks ranging in
ize from a few megabytes to 128 MB. As a result, the cost of access is
o longer uniform for each block.

Our analysis process begins with a similarity search and attempts to
stimate the cost. We suppose  =

{

𝑝1,… , 𝑝𝑚
}

is the partition state of
the dataset , and 𝑤(𝑝𝑖), ℎ(𝑝𝑖) are the width and height of the minimum
ound rectangle (MBR) of partition 𝑝𝑖, respectively. There are two
ossible relations between search  and partition 𝑝𝑖, overlapping and
isjointing. As shown in Fig. 3, the buffer region of  (the blue part)
s disjoint to partition 𝑝2, which means that searching for  does not
equire processing 𝑝2. Instead,  overlaps with 𝑝1, so the partition 𝑝1
eeds to be processed to return the result. To determine the relationship
etween the query  and the partition 𝑝𝑖, we computed the probability
hat  intersects 𝑝𝑖. For this purpose, this paper defines a buffer 𝐵𝑖 for
he partition 𝑝𝑖, which extends in all directions with a buffer size of 𝜀.
t can be observed that  overlaps a partition (e.g., 𝑝1) if the minimum
istance between  and buffer region (e.g., 𝐵1) is not greater than 𝜀;
therwise, it is disjoint. The probability that the query  intersects the
artition 𝑝𝑖 is the ratio of the area of 𝐵𝑖 to the area of 𝑀𝐵𝑅() (cf.
ppendix A.2).

heorem 2. The probability of intersection of partition 𝑝𝑖 and query  is
qual to the ratio of the area of buffer region 𝐵𝑖 to the area of data domain
f 𝑀𝐵𝑅(). (see the proof in Appendix A.2)

Thus, the average number of blocks provided by partition 𝑝𝑖 to 
s:

𝐶𝑏(𝑝𝑖,) =
(

𝑤(𝑝𝑖) + 2𝜀
) (

ℎ(𝑝𝑖) + 2𝜀
)

𝑤(𝑃 )ℎ(𝑃 )
⋅ 𝑎𝑏𝑙𝑜𝑐𝑘𝑠(𝑝𝑖) (5)

the average size of data contributed by partition 𝑝𝑖 to  is:

𝐶𝑠(𝑝𝑖,) =
(

𝑤(𝑝𝑖) + 2𝜀
) (

ℎ(𝑝𝑖) + 2𝜀
)

𝑤(𝑃 )ℎ(𝑃 )
⋅ 𝑎𝑠𝑖𝑧𝑒(𝑝𝑖) (6)

Next, we analyze the cost of processing a search in HDFS. First,
he cost of locating overlapping blocks is fixed, which is related to the
umber of partitioned blocks. Second, the cost of scanning the whole
artition depends on the size of the partitioning. Consequently, the total
ost (running time) to finish a similarity search can be expressed as a
inear combination of 𝐿𝐶𝑏(𝑝𝑖,) and 𝑆𝐶𝑠(𝑝𝑖,) as follows:

𝐶(𝑝𝑖,) = 𝑘𝑏 ⋅ 𝐿𝐶𝑏(𝑝𝑖,) + 𝑘𝑠 ⋅ 𝑆𝐶𝑠(𝑝𝑖,) (7)

here 𝑘𝑏 and 𝑘𝑠 are hardware-specific coefficients, respectively.
According to Eq. (4), the cost of answering the query 𝑖 on the

artitions of  is as follows:

𝐶( ,) = 𝑘𝑏 ⋅
∑

𝑝𝑖∈
𝐿𝐶𝑏(𝑝𝑖,) + 𝑘𝑠 ⋅

∑

𝑝𝑖∈
𝑆𝐶𝑠(𝑝𝑖,) (8)

.2. Benefit model for data reorganization

This section presents a benefit model which utilizes the cost model to
ompute the benefits of data reorganization, i.e., the cost of similarity

earch after data reorganization subtracted the cost of similarity search
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efore reorganization. To formalize the benefits of reorganization, the
artitioning state at 𝑡 moments is denoted 𝑡 and the partitioning state
fter reorganization is denoted as 𝑡+1. We suppose that a set of low
uality partitions 𝑡 =

{

𝑝1,… , 𝑝𝑛
}

⊆ 𝑡 is selected for reorganization
nd a set of new partitions 𝑡+1 =

{

𝑝′1,… , 𝑝′𝑚
}

⊆ 𝑡+1 is generated. The
reorganization benefit of 𝑡 is defined as the search cost saved when
he partition is reorganized from 𝑡 to 𝑡+1.

𝑒𝑛𝑒𝑓𝑖𝑡(𝑡,) = 𝑄𝐶(𝑡,) −𝑄𝐶(𝑡+1,) (9)

The goal of optimal partitioning problem is to find the mini-
mum 𝑄𝐶(𝑡+1,), so the problem turns into finding the maximum of
𝑏𝑒𝑛𝑒𝑓𝑖𝑡(𝑡,).

We can rewrite 𝑡 as (𝑡 − 𝑡) ∪ 𝑡, 𝑡+1 is similar.

𝑏𝑒𝑛𝑒𝑓𝑖𝑡(𝑡,) =𝑄𝐶((𝑡 − 𝑡) ∪ 𝑡,) −𝑄𝐶((

𝑡+1 − 𝑡+1) ∪ 𝑡+1,)
(10)

Since the cost model is linear, we convert Eq. (10) using the
superposition method as follows.

𝑏𝑒𝑛𝑒𝑓𝑖𝑡(𝑡,) =𝑄𝐶(𝑡,) −𝑄𝐶(𝑡+1,) +𝑄𝐶(

𝑡 − 𝑡,) −𝑄𝐶(𝑡+1 − 𝑡+1,)
(11)

But 𝑡 − 𝑡 ≡ 𝑡+1 − 𝑡+1, which are sets of unselected partitions.
They cost the same, which means the benefit of reorganization 𝑡 is:

𝑒𝑛𝑒𝑓𝑖𝑡(𝑡,) = 𝑄𝐶(𝑡,) −𝑄𝐶(𝑡+1,) (12)

To better understand the benefit model, Fig. 4 gives three scenarios
or reorganizing partitions. For simplicity, we assume that 𝑘𝑏 = 1,
𝑠 = 0, the area of 𝑀𝐵𝑅() is 𝑤() ⋅ ℎ() = 10 and distance threshold

𝜀 = 0.1.
The first scenario as shown in Fig. 4(a), partition 𝑝1 with 4 blocks

is reorganized into 4 partitions with one block. According to Eq. (5),
𝐿𝐶(𝑝1,) = (2+2×0.1)⋅(2+2×0.1)

10 ⋅ 4 = 1.936 and ∑5
𝑖=2 𝐿𝐶(𝑝𝑖,) = 4 ⋅

(1+2×0.1)⋅(1+2×0.1)
10 ⋅ 1 = 0.576. Therefore, the cost is reduced by 1.936 −

.144 = 1.36. This shows that by dividing 𝑝1 into four smaller single
artitions, an average of 1.36 fewer blocks will need to be accessed
uring processing the query . This scenario suggests that splitting a
arge partition containing multiple blocks into multiple smaller par-
itions containing one block can significantly reduce the search cost
i.e., the number of block accesses).

The second scenario as shown in Fig. 4(b), partition 𝑝1 with empty
rea is split into partition 𝑝2, 𝑝3 with one block that does not cover
mpty area. The costs before and after the reorganization are 𝐿𝐶(𝑝1,) =
(2+2×0.1)⋅(2+2×0.1)

10 ⋅2 = 0.968 and 𝐿𝐶(𝑝2,)+𝐿𝐶(𝑝3,) = 2⋅ (1+2×0.1)⋅(1+2×0.1)10 ⋅
= 0.288, respectively. The cost is reduced by 0.68. This scenario sug-
ests that reorganizing partitions containing empty area into partitions
hat do not cover empty areas can reduce search costs.

Fig. 4(c) shows the scenario of splitting two overlapping partitions.
e split the two overlapping partitions into six disjoint partitions.
5

C

he cost before and after reorganization are 𝐿𝐶(𝑝1,) + 𝐿𝐶(𝑝2,) =
⋅ (2+2×0.1)⋅(2+2×0.1)10 ⋅3 = 2.904 and ∑8

𝑖=3 𝐿𝐶(𝑝𝑖, 𝑞) = 6⋅ (1+2×0.1)⋅(1.5+2×0.1)10 ⋅1 =
1.244, respectively. The cost reduction is 1.68. This scenario suggests
that splitting overlapping partitions can reduce search cost.

The above scenario analysis shows that the benefit model proposed
in this paper tends to generate a small number of single block partitions.
This corresponds to DFS’s storage design, which always splits large
files into several single blocks of fixed size (e.g., 128 MB). Moreover,
the additional overhead added by calculating the benefits through the
master file is negligible.

In order to estimated the cost savings from data reorganization, we
consider the three scenarios mentioned above. However, in practice,
estimating the cost savings of scenario 3 is a trivial because it requires
knowing the distribution of data within the partition in advance, which
is not available in the master file. Therefore, only the first two scenarios
are considered in this paper. It is a challenge to calculate the benefit
without knowing the actual 𝑡. Thus, the key idea in computing the
benefits is to estimate 𝑏𝑒𝑛𝑒𝑓𝑖𝑡(𝑡,) without physically reorganizing
𝑡. To address this challenge, we estimate 𝑡+1 to obtain ̂𝑡+1, which
s an estimated set of partitions. To estimate ̂𝑡+1, we assume that
he reorganization produces 𝑚 = 𝑐𝑏𝑙𝑜𝑐𝑘𝑠(𝑡) single block, equal-sized,
isjoint partitions. According to this assumption, the total area of 𝑚
artitions is equal to the total area of 𝑡. Therefore, the estimated area
f each new partition 𝑝′𝑖(𝑖 = 1,… , 𝑚) satisfies the following condition.

(̂𝑝′𝑖) ⋅ ℎ̂(𝑝
′
𝑖) =

𝑤(𝑡) ⋅ ℎ(𝑡)
𝑐𝑏𝑙𝑜𝑐𝑘𝑠(𝑡)

(13)

emma 3. 𝑄𝐶(̂𝑡+1,) has a lower bound. (see the proof in Appendix A.3)

Although our assumption represents an ideal scenario, it still serves
s a good indicator of the potential benefits that can obtained. For
xample, in practice, the reorganization process may obtain lower bene-
its (e.g., in Fig. 4(c), where the reorganized partitions are overlapping)
r higher benefits (e.g., in Fig. 4(b), where the empty region is not
overed after reorganization). Finally, we reorganize 𝑡 as the estimated

benefit of ̂𝑡+1 rewritten as:

̂𝑏𝑒𝑛𝑒𝑓𝑖𝑡(𝑡,) = 𝑄𝐶(𝑡,) −𝑄𝐶(̂𝑡+1,) (14)

In summary, we can use Eq. (14) to select the partitions with the
aximum benefit upper bound for reorganization when the disk I/O

udget is limited, so as to obtain the optimized set of partitions. Since
ncremental partitioning process is an NP-hard (Section 3.2), we design
heuristic to address this problem, which will be discussed in Section 6.

. Instantiation of the Tinba framework

.1. Cost-based instantiation

This section presents a cost–benefit model-based heuristic (termed

BM) to instantiate the Tinba framework. The heuristic integrates
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cost–benefit model to minimal partitioning costs. When reorganiz-
ng partitions, any partitioning strategy with strong spatial locality
nd good load balancing can be used. We chose to use STR (Sort-
ile-Recursive) as the trajectory partitioning strategy because of its
implicity and proven effectiveness by [40], but other trajectory par-
itioning techniques can also be used, e.g., R-tree and R*-Grove [41].
ll these techniques are based on sample partitioning. The instantiation
teps are detailed below. 𝐶1
Data Flushing: As shown in Fig. 5(a), this step employs the R-tree

nsertion algorithm to select and append a partition for each trajec-
ory. The existing partitions and unpartitioned new data (or deletion
arkers) are input into the flushing step.
Partition Selection: This problem has been proven to be NP-hard in

ection 3. Therefore, based on the benefit model, we propose a greedy
lgorithm to select a set of most beneficial partitions for reorganization.

Algorithm 1 presents the pseudo code of greedy algorithm. The
nput are current partition  , budget , and query trajectory . The

output is the selected set of partitions for reorganization. We initializes
a set of selected partitions  (Line 1). We then traverse all partitions in
 and calculate the benefit for each partition (Lines 5–10). Specifically,
we calculate the benefit 𝑏 for each partition 𝑝𝑖 when it is added to 
(Line 5). If 𝑏 is greater than the maximum benefit, then 𝑝𝑖 is added
to  and removed from  (Lines 6–10). This step is repeated until the
allocated budget  is reached. Finally, the set of selected partitions 
is returned.

Data Reorganization: When the partition selection step provides
a collection of low quality partitions for reorganization, we need to
determine whether to reorganize them all at once or in smaller groups.
If they are reorganized in a group, this can be quite inaccurate if
the gaps between partitions are large. As a result, we first group the
selected partitions, add all overlapping or partition distances less than
threshold 𝜀 to a group, and then individually reorganize each group.
The reason is that grouping the selected partitions decreases the overlap
between the reorganized partitions and the existing partitions, making
6

the estimated benefits more realistic. t
Algorithm 1: Greedy Selection Algorithm
Input: Existing partition  = {𝑝1,… , 𝑝𝑚}, threshold , search

trajectory ;
Output: Selected partitions ;

1 Initialize a set of selected partitions  = {};
2 while 𝑎𝑏𝑙𝑜𝑐𝑘𝑠() ≤  and 𝑎𝑠𝑖𝑧𝑒() > 0 do
3 𝑚𝑎𝑥_𝑏𝑒𝑛𝑒𝑓𝑖𝑡 = 0;
4 foreach 𝑝𝑖 ∈  do
5 𝑏 = max

{

̂𝑏𝑒𝑛𝑒𝑓𝑖𝑡( ∪ {𝑝𝑖},),

6 ̂𝑏𝑒𝑛𝑒𝑓𝑖𝑡(,)
}

+ ̂𝑏𝑒𝑛𝑒𝑓𝑖𝑡(𝑝𝑖,);
7 if 𝑏 > 𝑚𝑎𝑥_𝑏𝑒𝑛𝑒𝑓𝑖𝑡 then
8 𝑚𝑎𝑥_𝑏𝑒𝑛𝑒𝑓𝑖𝑡 = 𝑏;
9 𝑝 ∗= 𝑝𝑖;
10  =  ∪ {𝑝 ∗};
11  =  − {𝑝 ∗};

Result: 

6.2. R-tree-based instantiation

This section presents a R-tree-based heuristic (termed R-P) to in-
stantiate the Tinba framework. The basic idea involves treating each
partition as a leaf node in an R-tree. The data flushing, partition
selection and data reorganization steps are illustrated below.

Data Flushing: This step employs the insertion algorithm of the R-
ree, selecting a partition for each track, as shown in Fig. 5(b). The
nput to this step is the existing partition and a batch of unpartitioned
ew data or deletion markers. Using the MBR of the existing partition,
his step scans the unpartitioned data and follows the ChooseSubtree
ethod of the R-tree to attach each track to a partition. The output of

his step is a set of intermediate partitions.



Advanced Engineering Informatics 57 (2023) 102064R. Tian et al.
Fig. 5. Three different instantiation of the Tinba framework.
Partition Selection: After the data flushing is finished, this step
determines the partitions that need to be reorganized. Based on the R-
tree design, partition selection step selects all partitions that exceed the
maximum capacity of M (M = 128 MB in this paper). For example, in
Fig. 5(b), partitions 𝑝′1, 𝑝

′
2 and 𝑝′4 are chosen for reorganization as they

exceed the maximum capacity.
Data Reorganization: The data reorganization step reorganizes

the partitions chosen in the former step using any static partitioning
algorithm with strong locality (e.g., STR). Particularly, R-P only divides
the partition into smaller partitions, and has no merging mechanism for
smaller partitions. Therefore, when the dataset is updated over time,
many small partitions may exist, as shown in Fig. 5(b).

6.3. LSM-tree-based instantiation

This section presents a LSM-tree-based heuristic (termed LSM-P)
to instantiate the Tinba framework. For the LSM-tree, each batch is
flushed and indexed as an individual component. the LSM-tree com-
pression policy merges these components based on their size and
creation time.

Data Flushing: This step ingests a batch that is indexed by an R-
tree. As the batch size may be larger than the DFS block size, the
7

batch may contain more than one partition. As shown in Fig. 5(c),
the new batch is indexed as new component 𝐶3 in addition to the
current components 𝐶1 and 𝐶2. Unlike R-P flushing, LSM-P creates new
partitions, while R-P does not create new partitions.

Partition Selection: The partition selection step obtains the meta-
data of the components, i.e., component size and creation time, from
the master and auxiliary files. We use HBase’s LSM compression policy
to identify the components to be merged.

Data Reorganization: The data reorganization step reorganizes
all partitions from the components chosen in the former step into a
new component. Fig. 5(c) illustrates how components 𝐶2 and 𝐶3 are
reorganized into a new component 𝐶4.

7. Experiments

In this section, we conduct a comprehensive experiments on real-
world and synthetic trajectory datasets to highlight the advantages of
the proposed work over other alternative methods.
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7.1. Experimental setup

Datasets. We use the following real-world and synthetic datasets in
ur experiments.
OSM-TRAJ(search): It contains all publicly available GPS tracks

of various moving objects) collected by OpenStreetMap4. We filtered
out clearly anomalous trajectories, including those are extremely long
(spanning across the world) or too short (staying at one point). OSM-
RAJ(search) contains 6.5 million trajectories and is 82.4 GB in size.
OSM-TRAJ(join): It is a subset of OSM-TRAJ(search). Since dis-

ributed similarity join requires more memory than search, we gener-
ted OSM-TRAJ(join) of size 50 GB by sampling OSM-TRAJ(search).
SYN-TRAJ: To test the scalability of various systems, we also

ynthesize a trajectory dataset with 400.2 GB, the process is as fol-
ows: we take the entire road network of the United States from
IGER/Line [42], generate a large number of shortest path queries,
nd use the returned shortest paths as synthetic trajectories. To better
imulate real trajectories on the road network, we randomly generate
hortest path queries such that the distances of the shortest paths
eturned to follow a Gaussian distribution with both mean and standard
eviation set to 30 km.
Methods tested. We have compared the following four methods,

ncluding AsterixDB [11] (VLDB 2014), TrajMesa [1] (ICDE 2020),
FT [15] (VLDB 2017) and DITA [3] (SIGMOD 2018).
AsterixDB5: A scalable, ingestion-oriented big data management

ystem that supports high frequency insertions. It natively supports
he LineString type instead of the trajectory type. However, LineString
efines a portable data interchange format, GeoJSON6, which is a
eographic representation of an array of point coordinates. In our
xperiments, we use this format to store trajectory as LineString, thus
xtending it to support trajectory similarity analytics.

TrajMesa7: An key–value database which allows per partition file
emain several KBs in size. It uses 𝑋𝑍2+ index scheme for trajectory
imilarity search.

DFT8: A distributed in-memory query framework for processing tra-
ectory similarity search over a large set of trajectories, which supports
réchet distance and Hausdorff distance.
DITA9: A most recent distributed in-memory trajectory analytics

ystem that support trajectory similarity search and join.
Tinba, our method: For the Tinba framework, we have presented a

heuristic CBM in Section 6. Moreover, we selected the R-P and LSM-P
methods in Section 6 for comparison with the CBM method.

For the fairness of the experiments, we make the following settings
against the baseline techniques.

1. For AsterixDB, we employ HDFS as the external data layer for
access. Other technologies employ HDFS as the storage layer.

2. We only consider the global pruning in TrajMesa, and the batch
filtering technique in DITA and DFT.

3. To eliminate system cache,10 we randomly select 100 different
queries, perform each query only once, and take the 5%–95%
interval and median response time of all queries as the final
results.

Evaluation metrics. We focus on evaluating the following metrics
in our experiments. Ingestion Time: the runtime to ingest a batch of
data.

4 https://www.openstreetmap.org/.
5 https://asterixdb.apache.org.
6 https://en.wikipedia.org/wiki/GeoJSON.
7 http://trajmesa.urban-computing.com/code/TrajMesa-src-2019-06-

4.zip
8 https://github.com/InitialDLab/traj-sim-spark
9 https://github.com/TsinghuaDatabaseGroup/DITA

10
8

HBase will cache results in memory to expedite the same queries.
Table 2
Parameter Settings (Default value is bolded).

Parameter Value

Threshold 𝜀 0.001, 0.002, 0.003, 0.004, 0.005
𝑏 32 MB, 64 MB, 128 MB, 256 MB, 512 MB
Batch Size 4 GB, 8 GB, 16 GB, 24 GB, 32 GB
 16, 32, 64, 128, 256
𝛿 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8

Dataset Size
OSM-TRAJ(search): 50, 54, 58, 62, 66, 70, 74, 78, 82
OSM-TRAJ(join): 8, 16, 24, 32, 40, 48
SYN-TRAJ: 368, 376, 384, 392, 400

Total Area: let (𝑝𝑖) be the area of partition 𝑝𝑖, which is the product
f its side lengths. The total area of the partitions is defined as () =
𝑝𝑖∈ 𝑎𝑏𝑙𝑜𝑐𝑘𝑠(𝑝𝑖) ⋅(𝑝𝑖). We multiply by the number of physical blocks
𝑏𝑙𝑜𝑐𝑘𝑠(𝑝𝑖) of partition 𝑝𝑖 because big trajectory analytics systems pro-
ess each block separately. The total area is preferably reduced to
inimize overlap with the query buffer region (see Fig. 3).
PSD: Partition’s Standard Deviation. Let 𝑎𝑠𝑖𝑧𝑒(𝑝𝑖) be the average

partition size. The PSD is defined as 𝑃𝑆𝐷() =
√

∑

𝑝𝑖∈

(

𝑎𝑠𝑖𝑧𝑒(𝑝𝑖)−𝑎𝑠𝑖𝑧𝑒(𝑝𝑖)
)2

||

. Lowering this value is preferred to balance
the load across partitions.

Block Utilization: block utilization measures how full HDFS blocks
are and is defined as  () =

∑

𝑝𝑖∈ 𝑎𝑠𝑖𝑧𝑒(𝑝𝑖)
𝑏⋅
∑

𝑝𝑖∈ 𝑎𝑏𝑙𝑜𝑐𝑘𝑠𝑝𝑖
. In big data applications,

each block is processed in a separate task that takes seconds to setup.
Having full or near-full blocks minimizes the overhead of setup. The
maximum block utilization is 1.0.

Latency: end-to-end execution time for a similarity search/join.
Implementation. All the experiments were conducted on a cluster

with 1 master and 31 slave nodes with 16 GB RAM and 4-core Intel(R)
Xeon(R) CPU E5-2620@2.10 GHz processors. Each node in the cluster
was connected to a Gigabit Ethernet switch and ran Ubuntu 16.04.01
with Spark 2.1.0 and Hadoop 2.7.2. All algorithms were implemented
using Java and Scala in Apache Spark, a popular distributed computing
engine.

Parameter Settings. Table 2 listed the parameter settings used in
the experiments. In particular, the dataset size in Section 7.2 is set to
20, 21,… , 80, and the total size of incremental data for delete workload
is half of the dataset in Section 7.3. For example, the dataset is 50 GB,
then the total incremental data size is 25 GB, which is split into 4
batches. When we varied a parameter, the others were set to default
values. Based on existing studies [3], we select 0.001, 0.002,… , 0.005 as
distance thresholds.

7.2. Effectiveness of cost-benefit model

We first study the effectiveness of the cost–benefit model sepa-
rately. We partitioned the OSM-TRAJ(search) dataset of different
sizes, and then randomly selected varying trajectories to perform simi-
larity searches on these partitions.

Fig. 6(a) shows the relationship between estimated and actual
search times. The results show a linear relationship between estimated
and actual search times with a correlation equal to 0.976. This demon-
strates the effectiveness of the cost model. The relationship between
estimated and actual benefits is depicted in Fig. 6(b). We observe
that the estimated and actual benefits are highly correlated, with a
correlation of 0.985. This suggests that the proposed benefit model can
be employed with reliability in the partition selection process.

7.3. Comparison of three instantiation methods

Figs. 7–9 showed how the three heuristics performed on three
workloads: insert, delete, and insert+delete. We compared ingestion

time, total area, PSD, and search latency using the OSM-TRAJ(search)

https://www.openstreetmap.org/
https://asterixdb.apache.org
https://en.wikipedia.org/wiki/GeoJSON
http://trajmesa.urban-computing.com/code/TrajMesa-src-2019-06-24.zip
http://trajmesa.urban-computing.com/code/TrajMesa-src-2019-06-24.zip
https://github.com/InitialDLab/traj-sim-spark
https://github.com/TsinghuaDatabaseGroup/DITA
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Fig. 6. Verification of the cost–benefit model on OSM-TRAJ(search).
Fig. 7. Comparison of three heuristics on OSM-TRAJ(search) with insert workload.
dataset. We split the raw OSM-TRAJ(search) into 8 GB batches to
simulate the data flow in Fig. 3. Each batch covers a subset of the
dataset and is designed to ensure that the distribution of ingested data
changes over time.

Figs. 7(a), 8(a) and 9(a) showed the ingestion time for three heuris-
tics on three workloads, respectively. It is clear that CBM outperforms
R-P, but both are slower than LSM-P. There are two reasons: (1) CBM
and R-P have the same data flushing operation, which appends new
entries or deletion marks to current partitions. The optimal partitioning
operation distinguishes R-P from CBM in that R-P separates each over-
flow partition independently, while CBM selects only the low quality
partitions for optimal processing. (2) The LSM-P flushing operation
partitions and persists the newly ingested data in an individual com-
ponent on disk, which is usually more efficiency than appending to an
existing partition. LSM-P optimal partitioning operation is performed
periodically in accordance with the LSM’s compaction policy, which
always reassembles selected components together. However, the com-
paction operation is not always triggered, the ingestion performance on
LSM-P is usually faster than CBM and R-P.
9

Figs. 7(b), 8(b) and 9(b) evaluated the total area of three different
heuristics on three workloads when varying the dataset size. We had
following observation. (1) CBM has the smallest total area because
CBM uses a cost–benefit model to optimize the partition reorganization
process to produce high-quality partitions. (2) R-P’s total area is slightly
larger than that of CBM but extremely smaller than that of LSM-
P. There are two reasons for this: (i) R-P’s overflow node splitting
strategy makes the total area of the partition after splitting no larger
than the total area before splitting, while LSM-P does not; (ii) R-
P achieves local optimality by splitting overflow nodes, while CBM
achieves global optimality through a cost–benefit model. (3) The total
area of LSM-P increases with the addition of new components and
decreases periodically when the merge operation is triggered.

We performed a similarity search task on the partitioned dataset
in order to select the optimal among the three heuristics. All heuristics
perform well in an insert workload, as shown in Fig. 7(d). For the delete
and insert+delete workloads in Figs. 8(d) and 9(d), however, CBM is
always preferable.
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Fig. 8. Comparison of three heuristics on OSM-TRAJ(search) with delete workload.
In all remaining experiments, we will use CBM as the default
instantiation of Tinba for comparison against baseline techniques.

7.4. Comparison against tested methods

Fig. 10 compares the performance of all tested methods. Since DFT
and DITA are designed for static trajectory data, they must reorganiza-
tion the entire partition after each data flushing process.

7.4.1. Ingestion performance
The experimental dataset size is initially set to 46 GB, and then

batches of 4 GB in size are added one at a time in order to test
the ingestion performance when the data is large. Experiments were
conducted to measure the cumulative time of ingest all batches. The
experimental results are as follows. (1) As the dataset size grows, all
techniques take more time as a larger dataset produce more batches. (2)
Tinba significantly outperforms baseline methods. For example, when
the dataset is equal to 78 GB, DFT took 5652 s, DITA took 5125 s,
TrajMesa took 2432 s, AxterixDB took 2580 s while Tinba took 1064 s.
There are three reasons: (i) Tinba adopt the block-level partitioning
strategy, the overhead is low. (ii) Only new records are inserted by
AsterixDB and TrajMesa, but they are impacted by the key–value index
and require the index structure to locate the exact location of each
record. (iii) Tinba optimized the data reorganization process with cost–
benefit model (which is proposed in Section 5), while DFT and DITA
repartitioned the whole data.

7.4.2. Scalability
We evaluated the scalability of Tinba and AsterixDB as shown in

Fig. 10(b) with different dataset size, since Tinba and AsterixDB are
the best way to ingest the workload. We start with a 360 GB data and
append several 8 GB batches to verify that Tinba and AsterixDB can
process very large dataset. As figure suggested, the gap between Tinba
and AsterixDB tends to be larger as the size of the data increases.
The reason is that Tinba achieves better scalability with its effective
10
incremental partitioning scheme, well-designed cost–benefit model. For
example, when the dataset size was increased from 384 GB to 392 GB,
AsterixDB spent 1676 s, while Tinba only spent 782 s.

7.4.3. Similarity search performance
Fig. 10(c) showed the performance of similarity search of all tech-

niques. We omit the results for TrajMesa as it took more than 12.4 min
to perform the search process. We observed that AsterixDB has higher
query latency than other techniques. This is because AsterixDB uses the
key–value indexing scheme, which can quickly locate a single record in
the results. However, as data size increases, accessing records individu-
ally becomes expensive. DFT and DITA showed reasonable performance
on small datasets and are also much better than AsterixDB on large
dataset. Also, Tinba is significantly better than other techniques. The
reasons were two-fold: (i) Tinba adopts the block-level partitioning
scheme to reduce the number of access partitions, which reduces the
overall processing time of similarity search. (ii) Tinba designed a
cost–benefit model to produce high quality partitions.

7.4.4. Similarity join performance
We performed a trajectory self-join search to find all similar pairs on

OSM-TRAJ (join) dataset. We did not consider DFT as it only supports
trajectory similarity search. Fig. 10(d) showed the join latency in
Tinba, AsterixDB and DITA. Experimental observations are as follows.
(1) Tinba and DITA are constantly better than AsterixDB by 6.5x-8.8x
especially when inputs size was large. The reason is that AsterixDB
had smaller partitions and they required more jobs to complete the
search than block level partitioning techniques. (2) Tinba achieves the
smallest join latency, but is only 1.3x faster than DITA on average.
This is because: (i) DITA always reorganizes the entire partition, so
it becomes highly optimized; (ii) Tinba optimally reorganizes the in-
termediate partitions by a optimal partitioning step after each batch
ingestion, so it can achieve superior performance.
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Fig. 9. Comparison of three heuristics on OSM-TRAJ(search) with insert+delete workload.

Fig. 10. Comparison against tested methods.
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Fig. 11. Influence of different partitioning parameters in Tinba.
7.5. Impacts of b, 𝜀 and batch size on tinba

Fig. 11(a) showed how HDFS block size impacted the ingestion time
nd search latency. We ingested the OSM-TRAJ(search) dataset, while

varied the block size and had the following observations. With the
increase of block size, the ingestion time decreases and then gets larger,
shows a ‘‘concave’’ trend. However, search efficiency slows down for
larger block sizes, which is to be expected since the search has to
process more data on average. This suggests that the best choice of
the block size for HDFS is 128 MB or 256 MB, since the gap between
ingestion time and search latency is minimal at these two points.

Fig. 11(b) showed how the threshold 𝜀 impacted the cost model. We
varied the threshold 𝜀 and observed that the maximum gap of ingestion
time is 175 s, which is relatively stable. The search efficiency showed
a decreasing trend, but the average search latency differed by 144 s at
maximum, which was a small gap. Intuitively, partitions optimized for
one threshold 𝜀 are expected to fit well into other 𝜀.

As shown in Fig. 11(c), we evaluated the performance of ingestion
nd search with varying batch size and had the following observations.
1) With the increases of the batch size, the ingestion time drastically
ecreased, due to fewer flushing and reorganization operations per-
ormed during the ingestion phase. (2) Tinba achieved relatively stable

search performance when the batch size is from 4 GB to 24 GB since
Tinba’s optimized data reorganization to maintain high quality parti-
tions. However, when the batch size increased from 24 GB to 32 GB,
the search latency started to rise because larger batches resulted in
less frequent reorganization and fewer optimal partitioning processing,
which produced low quality partitions.

8. Conclusions

In this paper, we proposed Tinba, an incremental partitioning
framework for efficient trajectory data analytics. We recasted the
incremental partitioning problem as an optimal partitioning problem
and proves its NP-hardness. We developed a heuristic techniques to
demonstrate the feasibility of Tinba. We proposed a cost model to
estimate the processing cost of analytical queries and design a benefit
model to estimate the cost savings of data reorganization. We pro-
pose a greedy algorithm to select a set of most beneficial partitions
12

for reorganization. The incremental partitioning technique of Tinba
is adapted to most trajectory similarity measures, e.g., DTW, EDR,
LCSS and Fréchet distance. Comprehensive experiments on real-world
and synthetic datasets demonstrate that Tinba outperforms other big
trajectory partitioning methods in terms of ingestion performance and
partition quality. In the future, we plan to optimize cost model by con-
sidering partitioned data migration costs, and improve the versatility
of the framework by considering adaptive cost models.
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Appendix A. Proof of Theorem and Lemma

A.1. Proof of Theorem 1

To prove that the optimal partitioning problem is also NP-hard,
a polynomial reduction needs to be constructed to transform the 0–
1 Knapsack problem [43] to this problem. Specifically, we need to
show that (1) 0–1 Knapsack problem can be reduced to a optimal
partitioning problem, (2) the optimal solution can be mapped from the
0–1 Knapsack problem to this problem, (3) both problem reduction and
solution mapping are required Polynomial time.

Reduction Algorithm: To reduce 0–1 Knapsack problem to this
problem, we define a cost function independently for each partition.

The form of the reduction is as follows.
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• The current partitioning  contains 𝑛 partitions, each partition
with size 𝑤𝑖 and query cost 𝑣𝑖.

• The threshold  is equivalent to the weight capacity 𝑊 .
• The cost function for one partition 𝑄𝐶(𝑝,) is defined as:

𝑄𝐶(𝑝,) =

{

0 𝑖𝑓 𝑝 ∈ 
∑

𝑝𝑖∈ 𝑣𝑖 −
∑

𝑝𝑖∈ ′ 𝑣𝑖 𝑜𝑡ℎ𝑒𝑟𝑠
(A.1)

Finally, we define 𝑄𝐶( ′,) =
∑

𝑝𝑖∈ ′ 𝑄𝐶(𝑝𝑖,). In particular, the
cost for a partitioning state  ′ is the total of cost for each partition
in  ′. The objective function ∑

𝑖∈𝐼 𝑤𝑖 ≤ 𝑊 of the Knapsack problem
educes to ∑

𝑖∈𝐼⌈
𝑤𝑖
𝑏 ⌉ +

∑

𝑖∈𝐼⌈
𝑤𝑖
𝑏 ⌉ ≤  ⇒ 𝐸𝐶( , ′) ≤ .

Solution Mapping: Assume that 𝐼 is an optimal solution to 0–1
Knapsack problem,  is a mapping function, and  ′ =

{

𝑝𝑖|𝑖 ∈ 𝐼
}

is
solution of optimal partitioning problem. For any 𝑖 ∈ 𝐼 , we have
(𝑖) ∈  ′. Similarly, for any 𝑝𝑖 ∈  ′, we have  (𝑝𝑖) ∈ 𝐼 .
Reduction Complexity: The above reduction algorithm and solu-

ion mapping can be completed in time complexity (𝑛).
To sum up, it can be concluded that the optimal partitioning prob-

em is NP-hard.

.2. Proof of Theorem 2

We first give the two events: event 𝐸1, the query  intersects with
he data domain 𝑀𝐵𝑅(); event 𝐸2, the query  intersects with the
artition 𝑝𝑖.

According to the Bayesian theorem, the probabilities of 𝐸1 and 𝐸2
satisfy 𝑃 (𝐸1|𝐸2) ⋅ 𝑃 (𝐸2) = 𝑃 (𝐸2|𝐸1) ⋅ 𝑃 (𝐸1). Also 𝑃 (𝐸1|𝐸2) = 1, and
𝑃 (𝐸2) = 𝑃 (𝐸2|𝐸1)⋅𝑃 (𝐸1). The possible values of 𝑃 (𝐸1) are 0 or 1, which
denote disjoint and intersection, respectively. We ignore the case where
𝑃 (𝐸1) = 0, so the query  and the partition 𝑝𝑖 must not intersect at this
point. When 𝑃 (𝐸1) = 1, we have 𝑃 (𝐸2) = 𝑃 (𝐸2|𝐸1) ⇒

𝑃 (𝐸2) =
𝑆(𝑀𝐵𝑅(𝐵𝑖))
𝑆(𝑀𝐵𝑅())

⋅
𝑆( ∩𝑀𝐵𝑅())
𝑆(𝑀𝐵𝑅())

where 𝑆() and  ∩𝑀𝐵𝑅() denote the area function and intersecting
region, respectively. Also, 𝑆(∩𝑀𝐵𝑅())

𝑆(𝑀𝐵𝑅()) is consistent for each partition.
or simplicity, let 𝑆(∩𝑆())

𝑆() = 1. So we have 𝑃 (𝐸2) =
𝑀𝐵𝑅(𝐵𝑖)

𝑆(𝑀𝐵𝑅()) .

A.3. Proof of Lemma 3

According to Eq. (5), it can be derived that

𝑄𝐶𝑏(𝑝′𝑖 ,) ≥
𝑤(𝑝′𝑖) ⋅ ℎ̂(𝑝

′
𝑖) + 2𝜀

√

𝑤(𝑝′𝑖) ⋅ ℎ̂(𝑝
′
𝑖) + 4𝜀2

𝑤()ℎ()
⋅

𝑎𝑏𝑙𝑜𝑐𝑘𝑠(𝑝′𝑖) = 𝑄𝐶𝐿
𝑏 (𝑝

′
𝑖 ,)

and similarly 𝑆𝐶𝑠(𝑝′𝑖 ,) ≥ 𝐿𝐶𝐿
𝑠 (𝑝

′
𝑖 ,). So, we have that 𝑄𝐶(̂𝑡+1,) ≥

𝐿𝐶𝐿
𝑏 (𝑝

′
𝑖 ,) + 𝑆𝐶𝐿

𝑠 (𝑝
′
𝑖 ,).

Appendix B. Extension to other similarity measures

B.1. Dynamic time warping (DTW)

Definition 8 (DTW). Given two trajectories  =
{

𝑡1,… , 𝑡𝑚
}

and  =
{

𝑞1,… , 𝑞𝑛
}

, DTW [36] is computed as below.

𝐷𝑇𝑊 ( ,) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

∑𝑚
𝑖=1 Dist(𝑡𝑖, 𝑞1) 𝑖𝑓 𝑛 = 1

∑𝑛
𝑗=1 Dist(𝑡1, 𝑞𝑗 ) 𝑖𝑓 𝑚 = 1

Dist(𝑡𝑚, 𝑞𝑛) + min
(

𝐷𝑇𝑊 ( 𝑚−1,𝑛−1),

𝐷𝑇𝑊 ( 𝑚−1,), 𝐷𝑇𝑊 ( ,𝑛−1)
)

𝑜𝑡ℎ𝑒𝑟𝑠

here  𝑚−1 is the prefix trajectory of  by removing the last point.
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According to Eq. (2) and Definition 8, we can conclude that 𝐷𝑇𝑊
( ,) is not less than Fréchet ( ,) constant. As shown in Fig. B.12,
given two trajectories 1 and 3, 𝐷𝑇𝑊 (1, 3) = 6.41 > Fréchet (1, 3) =
1.41. Tinba does not need to update 𝜀 by accumulating distances from it

hen querying the partition. Similarly, we can still utilize buffer region
iltering and cost-based estimation.

.2. Edit distance on real sequences (EDR)

efinition 9 (EDR). Given two trajectories  and , and a matching
threshold 𝜖 ≥ 0, 𝐸𝐷𝑅 [44] is:

𝐸𝐷𝑅( ,) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑛 𝑖𝑓 𝑚 = 0
𝑚 𝑖𝑓 𝑛 = 0

min
(

𝐸𝐷𝑅( 2,𝑚, 𝑞2,𝑛) + 𝑠𝑢𝑏𝑐𝑜𝑠𝑡(𝑡1, 𝑞1),

𝐸𝐷𝑅( 2,𝑚, 𝑞) + 1, 𝐸𝐷𝑅( , 𝑞2,𝑛) + 1
)

𝑜𝑡ℎ𝑒𝑟𝑠

where  2,𝑚 represents trajectory  with its first point removed, and
𝑠𝑢𝑏𝑐𝑜𝑠𝑡(𝑡, 𝑞) = 0 if Dist(𝑡, 𝑞) ≤ 𝜖; 1 otherwise.

Given two trajectories 1 and 3 in Fig. B.12, let 𝜖 = 1, we have
𝐸𝐷𝑅(1, 3) = 2. For each partition’s MBR, we compute the distance
to the query trajectory . According Appendix B.2, if it is beyond 𝜖,
𝑠𝑢𝑏𝑐𝑜𝑠𝑡(𝑡, 𝑞) is always equal to 1 and 𝐸𝐷𝑅( ,) = max(𝑚, 𝑛), we safely
prune this partition.

B.3. Longest common subsequence distance (LCSS)

Definition 10 (LCSS). Given two trajectories  and  with lengths 𝑚
and 𝑛, an integer 𝛿 ≥ 0 and a matching threshold 𝜖 ≥ 0, 𝐿𝐶𝑆𝑆 is defined
as below [44]:

𝐿𝐶𝑆𝑆( ,) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

0 𝑖𝑓 𝑚 = 0 𝑜𝑟 𝑛 = 0
1 + 𝐿𝐶𝑆𝑆( 𝑚−1,𝑛−1) 𝑖𝑓 |𝑚 − 𝑛| ≤ 𝛿 &

max
(

𝐿𝐶𝑆𝑆( 𝑚−1,), Dist(𝑡𝑚, 𝑞𝑛) ≤ 𝜖

𝐿𝐶𝑆𝑆( ,𝑛−1)
)

𝑜𝑡ℎ𝑒𝑟𝑠

where  𝑚−1 is the prefix trajectory of  with the last point removed.

Given two trajectories 1 and 3 in Fig. B.12, let 𝛿 = 1, 𝜖 =
1, we have 𝐿𝐶𝑆𝑆(1, 3) = 5. Similar to EDR, for each partition’s
MBR, we compute the distance to the query trajectory . According
Definition 10, if it is beyond 𝜖, 𝐿𝐶𝑆𝑆( ,) is always equal to 0, we
also safely prune this partition.

Appendix C. Additional experiments

C.1. Evaluation of other distance functions

In this section, we evaluate the performance of Tinba on different
similarity measures. The parameters 𝜖 and 𝛿 were set to 0.0001 and
3, respectively. We generate SYN-TRAJ(sample) by sampling 10%
of SYN-TRAJ. The experimental results are shown in Fig. C.13. We
could observe that: (1) All distance functions took more time as 𝜀
increases, because the larger the threshold, the more results; (2) LCSS
was faster than EDR with the same threshold, because LCSS has a max
interval constraint of matching point while EDR does not; (3) DTW
is faster than Fréchet for the same threshold because DTW computes
the cumulative sum of distances, while Fréchet selects the maximum
distance.
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Fig. B.12. Example Trajectories.
Fig. C.13. Evaluation on OSM-TRAJ(search) and SYN-TRAJwith the Fréchet, DTW, EDR and LCSS functions.
Fig. C.14. Influence of parameters  and 𝜎.
C.2. Impacts of  and 𝜎

Fig. C.14(a) shows the impact of threshold  on search latency
and ingestion time. With the increase of threshold, the query latency
decreases gradually as a larger threshold cause more partitions to be
reorganized, which improves partition quality. Note, however, that
after  ≥ 128, there is no longer any significant reduction in query
latency. The  does have a significant impact on ingestion time. This
is because, when  increases, the number of blocks reads and the
number of writing new condensed partitions also increase, which incurs
significant I/O overhead. The trends for search latency and ingest time
are opposite. This suggests that we can further reduce the search time
while maintaining a high ingestion rate, and we plan to investigate how
to choose an optimal  value in the future.

In order to highlight the impact of reorganization frequency in
Tinba, we introduce a parameter 𝜎, in which the reorganization process
is only triggered if the benefit ratio (the ratio of 𝑏𝑒𝑛𝑒𝑓𝑖𝑡(𝑡,) and
14

𝐶(𝑡,)) is greater than threshold 𝜎. When 𝜎 = 0, Tinba always
reorganizes. Fig. C.14(b) shows how the value of 𝜎 does have an impact
on the query latency and the amount of data being reorganized. With
the increase of 𝜎, a small amount of data is processed because there is
less reorganization. The query latency worsens significantly only when
𝜎 is very high. The above shows that we can further optimize the
partitioning time while keeping the same search performance, and we
plan to further investigate this impact in the future.
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